cl-conditions
Release

January 16, 2017

Contents

1 Overview
1.1 Rationale e e e e
1.2 Installation e e e e e e
1.3 Documentation o it e e e e e e e e e e e e e e e e e
1.4 Development L e e
1.5 Related projects o L e e e e
2 Installation
3 Usage
4 Reference
4.1 conditionS L. e e e e e e e
5 Contributing
S.10 BU@reports e e e e e e e e e e e e e e e
5.2 Documentation improvements v v v v v vt e e e e e e e e e e e e e e e e
5.3 Feature requests and feedback L e
54 Development e e e e e e e e e e e e e e e e
6 Authors
7 Changelog
7.1 0.2.0(2016-04-05) o oo e e e
7.2 0.1.0(2016-03-29) L e e e
8 Indices and tables
Python Module Index

W W NN =

11
11
11
11
11

13

15
15
15

17

19

CHAPTER 1

Overview

Implementation of the Common Lisp’s conditions system in Python.

Free software: BSD license.

docs

tests

package

1.1 Rationale

Common Lisp (CL) has a very rich condition system. Conditions in CL is a some sort of signals, and used not only for
exception handling but also in some other patterns. There is a very good explanation of how they works — a chapter
from the book Practical Common Lisp by Peter Seibel: Beyond Exception Handling: Conditions and Restarts.

Python’s exceptions cover only one scenerio from this book, but Common Lisp’s conditions allows more interesting
usage, particlarly “restarts”. Restart is a way to continue code execution after the exception was signaled, without
unwinding a call stack. I’ll repeat: without unwinding a call stack.

Moreover, conditions allows to the author of the library to define varios cases to be choosen to take over the exception.

1.1.1 Example

Here is example from the book, but implemented in python using conditions library:

calls "parse_log_entry again with other text value.
this call

nwn

text = text.strip()

http://www.gigamonkeys.com/book/beyond-exception-handling-conditions-and-restarts.html
https://github.com/svetlyak40wt/python-cl-conditions

cl-conditions, Release

if well formed_log_entry_p(text):
return LogEntry (text)
else:
def use_value (obj):
return obj
def reparse(text):
return parse_log_entry (text)

with restarts (use_value,
reparse) as call:
return call (signal, MalformedLogEntryError (text))

def log_analyzer (

"N TH g

edure replaces ever ine which can't be parsec
with special ok

with handle (MalformedLogEntryError,

lambda (c):
invoke_restart ('use_value',
MalformedLogEntry(c.text))):
for filename in find_all_logs (path):
analyze_log(filename)

def log_analyzer2 (path):

"HNTH g

s p
5 a line

nwn

with handle (MalformedLogEntryError,
lambda (c):
invoke_restart ('reparse’
"ERROR: " 4+ c.text)):
for filename in find_all_logs (path):
analyze_log(filename)

What we have here is a function parse_log_entry which defines two ways of handling an exceptional situa-
tion: use_value and reparse. But decision how bad lines should be handled is made by high level function
log_analyser. Original book’s chapter have only one version of the 1og_analyser, but I've added an alterna-
tive log_analyser? toillustrate a why restarts is a useful pattern. The value of this pattern is in the ability to move
dicision making code from low level library functions into the higher level business logic.

Full version of this example can be found in example/example.py file.

1.2 Installation

‘pip install conditions

1.3 Documentation

https://python-cl-conditions.readthedocs.org/

Chapter 1. Overview

https://github.com/svetlyak40wt/python-cl-conditions/blob/master/example/example.py
https://python-cl-conditions.readthedocs.org/

cl-conditions, Release

1.4 Development

To run the all tests run:

ltox

Note, to combine the coverage data from all the tox environments run:

Windows
set PYTEST_ADDOPTS=--cov-append
tox

Other
PYTEST_ADDOPTS=--cov-append tox

1.5 Related projects

There is also withrestart python library, created with the same intent as conditions. But it have clunky API and weird
name seems abandoned since 2010.

1.4. Development 3

https://pypi.python.org/pypi/withrestart
https://github.com/svetlyak40wt/python-cl-conditions

cl-conditions, Release

4 Chapter 1. Overview

CHAPTER 2

Installation

At the command line:

pip install conditions

cl-conditions, Release

6 Chapter 2. Installation

CHAPTER 3

Usage

To use cl-conditions in a project:

import conditions

cl-conditions, Release

8 Chapter 3. Usage

CHAPTER 4

Reference

4.1 conditions

conditions.signals.signal (e)
Some docstrings.

conditions.
conditions
conditions.
conditions.

conditions

handlers

.handlers.

restarts.

restarts

.restarts

.find handler (¢)

handle (*args, **kwds)

find restart (name)

.invoke_restart (name, *args, **kwargs)

.restart (callback)

class conditions.restarts.restarts (*callbacks)

exception conditions.exceptions.InvokeRestart (callback, *args, **kwargs)

exception conditions.exceptions.RestartNotFoundError

cl-conditions, Release

10 Chapter 4. Reference

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

5.1 Bug reports

When reporting a bug please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

¢ Detailed steps to reproduce the bug.

5.2 Documentation improvements

cl-conditions could always use more documentation, whether as part of the official cl-conditions docs, in docstrings,
or even on the web in blog posts, articles, and such.

5.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/svetlyak4Owt/python-cl-conditions/issues.
If you are proposing a feature:

¢ Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that code contributions are welcome :)

5.4 Development

To set up python-cl-conditions for local development:
1. Fork python-cl-conditions (look for the “Fork™ button).

2. Clone your fork locally:

11

https://github.com/svetlyak40wt/python-cl-conditions/issues
https://github.com/svetlyak40wt/python-cl-conditions/issues
https://github.com/svetlyak40wt/python-cl-conditions

cl-conditions, Release

git clone git@github.com:your_name_here/python-cl-conditions.git

3. Create a branch for local development:

‘ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. When you’re done making changes, run all the checks, doc builder and spell checker with tox one command:

‘ tox

5. Commit your changes and push your branch to GitHub:

git add
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

5.4.1 Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.
For merging, you should:

1. Include passing tests (run tox) '

2. Update documentation when there’s new API, functionality etc.

3. Add a note to CHANGELOG. rst about the changes.

4. Add yourself to AUTHORS . rst.

5.4.2 Tips

To run a subset of tests:

’tox —e envname —-- py.test -k test_myfeature

To run all the test environments in parallel (youneed to pip install detox):

‘detox

1If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.
It will be slower though ...

12 Chapter 5. Contributing

http://tox.readthedocs.org/en/latest/install.html
https://travis-ci.org/svetlyak40wt/python-cl-conditions/pull_requests

CHAPTER 6

Authors

* Alexander Artemenko - http://dev.svetlyak.ru

13

http://dev.svetlyak.ru

cl-conditions, Release

14 Chapter 6. Authors

CHAPTER 7

Changelog

7.1 0.2.0 (2016-04-05)

¢ Added context manager restarts and manager restart now gets only a function and returns a function
like to call code to be restarted.

7.2 0.1.0 (2016-03-29)

* First release on PyPI.

15

cl-conditions, Release

16 Chapter 7. Changelog

CHAPTER 8

Indices and tables

¢ genindex
* modindex

e search

17

cl-conditions, Release

18 Chapter 8. Indices and tables

Python Module Index

C

conditions
conditions

conditions

.exceptions,9
.handlers, 9
conditions.

restarts,9

.signals, 9

19

cl-conditions, Release

20 Python Module Index

Index

C

conditions.exceptions (module), 9
conditions.handlers (module), 9
conditions.restarts (module), 9
conditions.signals (module), 9

F

find_handler() (in module conditions.handlers), 9
find_restart() (in module conditions.restarts), 9

H

handle() (in module conditions.handlers), 9

invoke_restart() (in module conditions.restarts), 9
InvokeRestart, 9

R

restart() (in module conditions.restarts), 9
RestartNotFoundError, 9
restarts (class in conditions.restarts), 9

S

signal() (in module conditions.signals), 9

21

	Overview
	Rationale
	Installation
	Documentation
	Development
	Related projects

	Installation
	Usage
	Reference
	conditions

	Contributing
	Bug reports
	Documentation improvements
	Feature requests and feedback
	Development

	Authors
	Changelog
	0.2.0 (2016-04-05)
	0.1.0 (2016-03-29)

	Indices and tables
	Python Module Index

